IRREGULARITIES OF DISTRIBUTION. VIII(1)

BY WOLFGANG M. SCHMIDT

ABSTRACT. If x_1, x_2, \ldots is a sequence in the unit interval $0 \le x < 1$ and if S is a subinterval, write C(n, S) for the number of elements among x_1, \ldots, x_n which lie in S, minus n times the length of S. For a well distributed sequence, C(n, S) as a function of n will be small. It is shown that the lengths of the intervals S for which C(n, S) $(n = 1, 2, \ldots)$ is bounded form at most a countable set.

1. Introduction. The present paper is independent of the preceding papers of this series. However, the reader would be advised to first read the sixth paper [3] of the series, which deals with a similar but rather simpler problem.

We shall be concerned with the distribution of an arbitrary given sequence x_1, x_2, \ldots of points in the unit cube of k-dimensional Euclidean space. This unit cube U^k consists of the points $x = (x_1, \ldots, x_k)$ with $0 \le x_i < 1$ $(i = 1, \ldots, k)$.

Let S be a measurable subset of U^k of measure $\mu(S)$, and write Z(n, S) for the number of points among x_1, \ldots, x_n which lie in S. The quantity

$$D(n,S) = |Z(n,S) - n\mu(S)|$$

tells us how far Z(n, S) deviates from the "expected" number $n\mu(S)$. Put

(2)
$$E(S) = \sup_{n} D(n, S),$$

and call E(S) the *error* of S. We shall show in the present paper that very few boxes **B** with sides parallel to the coordinate axes have a finite error E(B).

By a subinterval of U^1 we shall mean a single point or an open, half-open or closed interval of positive length which is contained in U^1 . By a box contained in U^k we shall understand a set $B = I_1 \times \cdots \times I_k$, where I_1, \cdots, I_k are subintervals of U^1 . Thus B consists of points $\mathbf{x} = (x_1, \dots, x_k)$ with $x_j \in I_j (j = 1, \dots, k)$.(2) Write \mathfrak{B}_t , for the class of sets which are unions of at most t boxes in U^k .

For $\kappa > 0$, let $M_t(\kappa)$ be the set of numbers μ of the type $\mu = \mu(A)$ where $A \in \mathfrak{B}_t$ and $E(A) < \kappa$. Let $M_t(\infty)$ be the set of numbers μ of the type $\mu = \mu(A)$ with $A \in \mathfrak{B}_t$ and $E(A) < \infty$; thus $M_t(\infty)$ is the union of the sets $M_t(\kappa)$ with $0 < \kappa < \infty$. Recall that a number γ is a *limit point* of a set M of reals if there is a sequence of distinct elements of M which converge to γ . The *derivative* $M^{(1)}$ of

Received by the editors October 3, 1972.

AMS (MOS) subject classifications (1970). Primary 10F40.

Key words and phrases. Uniform distribution, irregularities of distribution, points in a cube.

⁽¹⁾ Written with partial support from NSF grant NSF-GP-22588.

⁽²⁾ In the theory of uniform distribution, one usually studies the "discrepancy" function $D(n) = \sup D(n, \mathbf{B})$, with the supremum taken over all boxes **B** in \mathbf{U}^k , rather than the error $E(\mathbf{B})$, as in the present paper.

M consists of all the limit points of M. The higher derivatives are defined inductively by $M^{(d)} = (M^{(d-1)})^{(1)}$ (d = 2, 3, ...).

Theorem 1. Suppose $d > 8\kappa > 0$. Then $(M_t(\kappa))^{(d)}$ is empty.

Since a set M having $M^{(d)}$ empty for some d is nowhere dense and is at most countable, we obtain the

Corollary. Each set $M_i(\kappa)$ is nowhere dense and is at most countable. The set $M_i(\infty)$ is at most countable.

In [3] we proved a result like Theorem 1 in the one-dimensional case for intervals I whose left endpoint was 0. The generalization to arbitrary intervals causes considerable additional difficulties in the proof; the generalization to arbitrary dimension and the generalization to unions of t boxes are easy.

As far as I know, the only interesting sequences for which the boxes **B** with finite $E(\mathbf{B})$ have been determined are the sequences

(3)
$$x_n = \{\alpha n + \beta\} \quad (n = 1, 2, ...)$$

in the one-dimensional case, where the notation $\{\xi\}$ denotes the fractional part of ξ . Let us define an *interval modulo* 1 as either a subinterval \mathbf{I} of \mathbf{U}^1 or the union of two subintervals \mathbf{I}_1 , \mathbf{I}_2 of \mathbf{U}^1 such that $0 \in \mathbf{I}_1$ and \mathbf{I}_2 contains every number less than 1 which is sufficiently close to 1. (In particular, every interval modulo 1 lies in \mathfrak{B}_2 . A suitably defined box modulo 1 would lie in \mathfrak{B}_{2^k} ; in fact we defined the class \mathfrak{B}_t in order to allow boxes modulo 1.) Now for a sequence (3), $E(\mathbf{J})$ is finite where \mathbf{J} is an interval modulo 1 if (Ostrowski [2]) and only if (Kesten [1]; this is the hard part) $\mu(\mathbf{J}) = \{\alpha l\}$ for some integer l. In particular, the set $M_1(\infty)$ is infinite if α is irrational.

No particular importance attaches to the number 8κ in Theorem 1. But in [3] it was shown that the van der Corput sequence has $(M_1(d))^{(d)}$ nonempty for $d = 1, 2, \ldots$.

Theorem 1 probably remains true if the class \mathfrak{B}_t is replaced by the class \mathfrak{B}_t of polyhedrons with at most t faces or by the class \mathfrak{E} of ellipsoids contained in U^k . But Theorem 1 is not true for the class of convex subsets of U^k when k > 1:

Theorem 2. Suppose k > 1. There is a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ in \mathbf{U}^k such that for every μ in $0 \le \mu \le 1$, there is a convex set \mathbf{S} in \mathbf{U}^k with $\mu(\mathbf{S}) = \mu$ and with $E(\mathbf{S}) \le \frac{1}{2}$.

The fairly easy proof of Theorem 2 is given in the last section and is independent of the rest of the paper. The proof of Theorem 1 is unfortunately rather long. It would be desirable to have a simpler proof.

2. Preliminaries. Every interval is of one of the following four types: (i) $\alpha \le x \le \beta$, (ii) $\alpha \le x < \beta$, (iii) $\alpha < x \le \beta$, (iv) $\alpha < x < \beta$. Now for a box $\mathbf{B} = \mathbf{I}_1 \times \cdots \times \mathbf{I}_k$, each interval \mathbf{I}_j is of one of four possible types, and hence we have 4^k types of boxes. There are 4^{kt} types of t-tuples of boxes $\mathbf{B}_1, \ldots, \mathbf{B}_p$ and

hence there is a finite number of types of elements of \mathfrak{B}_t . It clearly will suffice to prove Theorem 1 for each subclass of \mathfrak{B}_t whose elements are of a given type. For the sake of simplicity we shall only deal with the type where each interval I used in the definition of boxes is of the type $\alpha \leq x < \beta$. Denote such an interval by $\mathbb{I}[\alpha, \beta)$.

For $1 \le i \le k$, let $\mathbf{B}_i(\alpha)$ be the set of points \mathbf{x} in \mathbf{U}^k with $\alpha \le x_i < 1$, and for $k+1 \le i \le 2k$, let $\mathbf{B}_i(\alpha)$ be the box of points \mathbf{x} in \mathbf{U}^k with $0 \le x_{i-k} < \alpha$. For $\alpha_1, \ldots, \alpha_{2k}$ with $0 \le \alpha_i \le 1$ $(j = 1, \ldots, 2k)$, put

$$\mathbf{B}(\alpha_1,\ldots,\alpha_{2k})=\mathbf{B}(\alpha_1)\cap\cdots\cap\mathbf{B}(\alpha_{2k}).$$

Then $\mathbf{B}(\alpha_1, \ldots, \alpha_{2k})$ is a box, and every box of the type described above may be written as $\mathbf{I}[\alpha_1, \alpha_{k+1}) \times \cdots \times \mathbf{I}[\alpha_k, \alpha_{2k}) = \mathbf{B}(\alpha_1, \ldots, \alpha_{2k})$. For $\alpha_1, \ldots, \alpha_{2kt}$ with $0 \le \alpha_i \le 1 (j = 1, \ldots, 2kt)$, put

$$\mathbf{A}(\alpha_1,\ldots,\alpha_{2kt}) = \mathbf{B}(\alpha_1,\ldots,\alpha_{2k}) \cup \mathbf{B}(\alpha_{2k+1},\ldots,\alpha_{4k}) \cup \cdots \cup \mathbf{B}(\alpha_{2k(t-1)+1},\ldots,\alpha_{2kt}).$$

Then $A(\alpha_1, \ldots, \alpha_{2kt})$ is in \mathfrak{B}_t , and every element of \mathfrak{B}_t of the type described above is a set $A(\alpha_1, \ldots, \alpha_{2kt})$.

It will be convenient to write 2kt = m, $\alpha = (\alpha_1, \dots, \alpha_{2kt})$ and $A(\alpha) = A(\alpha_1, \dots, \alpha_{2kt})$. Also put $\mu(\alpha) = \mu(A(\alpha))$. The vectors α will be restricted to the closed cube \mathbb{C} in R^m defined by $0 \le \alpha_i \le 1$ $(i = 1, \dots, m)$.

We shall call a finite or infinite sequence of real numbers $\alpha^{(1)}$, $\alpha^{(2)}$, ... monotonic of the type < if $\alpha^{(1)} < \alpha^{(2)} < \ldots$, monotonic of the type = if $\alpha^{(1)} = \alpha^{(2)} = \ldots$, and monotonic of the type > if $\alpha^{(1)} > \alpha^{(2)} > \cdots$. Every infinite sequence of real numbers contains an infinite monotonic subsequence. A finite or infinite sequence of vectors $\alpha^{(1)} = (\alpha_1^{(1)}, \ldots, \alpha_m^{(1)}), \alpha^{(2)} = (\alpha_1^{(2)}, \ldots, \alpha_m^{(2)}), \ldots$ will be called monotonic of the type (u_1, \ldots, u_m) where each u_h is either < or = or >, if for $1 \le h \le m$, the sequence $\alpha_h^{(1)}, \alpha_h^{(2)}, \ldots$ is monotonic of the type u_h .

Given subsets A, A' of U^k , the symmetric difference

A^A'

is the set of elements x which lie in A but not in A', or in A' but not in A.

Lemma 1. Suppose $\alpha^{(1)}$, $\alpha^{(2)}$, ... is a monotonic sequence of vectors in C. Then no point x of U^k lies in more than m = 2kt of the sets $A(\alpha^{(1)})^A(\alpha^{(2)})$, $A(\alpha^{(2)})^A(\alpha^{(3)})$, ...

Proof. $A(\alpha) = A(\alpha_1, \ldots, \alpha_{2kt})$ is formed as a union and intersection of the 2kt sets $B_i(\alpha_{i+2kj})$ $(1 \le i \le 2k, 0 \le j \le t-1)$. Therefore if for every i, j with $1 \le i \le 2k, 0 \le j \le t-1$, the point x behaves the same way with respect to $B_i(\alpha_{i+2kj})$ and $B_i(\alpha'_{i+2kj})$, i.e. lies in both or in neither of them, then x lies in either both $A(\alpha)$ and $A(\alpha')$ or in neither of them. Hence if $x \in A(\alpha) \cap A(\alpha')$, then there are i, j with $1 \le i \le 2k, 0 \le j \le t-1$, such that $x \in B_i(\alpha_{i+2kj}) \cap B_i(\alpha'_{i+2kj})$.

Thus to prove Lemma 1, it will suffice to show that for fixed i, j, a point x lies in at most one of the sets

(4)
$$\mathbf{B}_{i}(\alpha_{i+2kj}^{(1)}) \hat{\mathbf{B}}_{i}(\alpha_{i+2kj}^{(2)}), \quad \mathbf{B}_{i}(\alpha_{i+2kj}^{(2)}) \hat{\mathbf{B}}_{i}(\alpha_{i+2kj}^{(3)}), \quad \dots$$

But $B_i(\alpha)$ decreases with α if $1 \le i \le k$, and it increases with α if $k+1 \le i \le 2k$. The sequence $\alpha_{i+2kj}^{(1)}$, $\alpha_{i+2kj}^{(2)}$, ... is monotonic. Hence the sequence of sets $B_i(\alpha_{i+2kj}^{(1)})$, $B_i(\alpha_{i+2kj}^{(2)})$, ... is either increasing or decreasing (in the weak sense). Therefore x can lie in at most one of the sets (4).

The property enunciated in Lemma 1, together with the continuity of $\mu(\alpha)$, are the only properties of the sets $A(\alpha)$ which we shall need. It would be easy to construct other parameter families of sets with these properties, and hence other families of sets for which Theorem 1 holds.

3. Directed systems. Let (i_1, \ldots, i_d) and (i'_1, \ldots, i'_d) be d-tuples of positive integers. We shall write

$$(i_1,\ldots,i_d) < (i'_1,\ldots,i'_d)$$

if $i_1 = i'_1, \ldots, i_{j-1} = i'_{j-1}$ and $i_j < i'_j$.

We are going to define directed systems of real numbers. A directed system of order 0 consists of a single real number α in $0 \le \alpha \le 1$. A directed system of order 1 is a finite monotonic sequence of reals $\alpha(1), \alpha(2), \ldots, \alpha(l)$ with l > 1 terms in $0 \le \alpha \le 1$. Thus a directed system of order 1 is of some type (u) where u may be <, = or >. For arbitrary $d \ge 1$, a directed system of order d is of some type (u_1, \ldots, u_d) , where each u_i may be <, = or >, and consists of integers l_1, \ldots, l_d greater than 1 and of real numbers $\alpha(i_1, \ldots, i_d)$ $(1 \le i_1 \le l_1, \ldots, 1 \le i_d, i_d \le l_d)$ in the interval $0 \le \alpha \le 1$, such that if $1 \le i_1, i_1' \le l_1, \ldots, 1 \le i_d$, $i_d' \le l_d$ and $(i_1, \ldots, i_d) < (i_1', \ldots, i_d')$, then

$$\alpha(i_1,\ldots,i_d)u_j\alpha(i'_1,\ldots,i'_d).$$

For example, in a directed system of the type (<, ..., <), the numbers $\alpha(i_1, ..., i_d)$ are ordered lexicographically.

Lemma 2. Suppose there exists a directed system of the type $(u_1, \ldots, u_{j-1}, \ldots, u_{j+1}, \ldots, u_d)$ where j < d. Then the symbols u_{j+1}, \ldots, u_d are all the = sign, i.e. the type is $(u_1, \ldots, u_{i-1}, =, \ldots, =)$.

Proof. Let $\alpha(i_1,\ldots,i_d)$ belong to a directed system of the type $(u_1,\ldots,u_{j-1},=,u_{j+1},\ldots,u_d)$. Then $\alpha(1,\ldots,1,1,i_{j+1},\ldots,i_d)=\alpha(1,\ldots,1,2,i'_{j+1},\ldots,i'_d)$ for any numbers $1\leq i_{j+1},i'_{j+1}\leq l_{j+1},\ldots,1\leq i_d,i'_d\leq l_d$. Hence the $l_{j+1}\ldots l_d$ numbers $\alpha(1,\ldots,1,i_{j+1},\ldots,i_d)$ with $1\leq i_{j+1}\leq l_{j+1},\ldots,1\leq i_d\leq l_d$ are all equal, and the symbols u_{j+1},\ldots,u_d must be the l_{j+1},\ldots,l_d sign.

Next, we define directed systems of vectors α . A directed system of order zero consists of a single vector α in the cube C. A directed system of order d where $d \ge 1$ is of some type $(u_{ih})(1 \le i \le d, 1 \le h \le m)$, where each u_{ih} is either <

or = or >, and consists of integers l_1, \ldots, l_d greater than 1 and of vectors $\alpha(i_1, \ldots, i_d)$ $(1 \le i_1 \le l_1, \ldots, 1 \le i_d \le l_d)$ such that for each h in $1 \le h \le m$, the coordinates $\alpha_h(i_1, \ldots, i_d)$ $(1 \le i_1 \le l_1, \ldots, 1 \le i_d \le l_d)$ form a directed system of reals of the type (u_{1h}, \ldots, u_{dh}) . That is, we have

$$\alpha_h(i_1,\ldots,i_d)u_{ih}\alpha_h(i'_1,\ldots,i'_d)$$

if
$$1 \le i_1, i'_1 \le l_1, \ldots, 1 \le i_d, i'_d \le l_d$$
 and $(i_1, \ldots, i_d) <_j (i'_1, \ldots, i'_d)$.

4. A proposition which implies Theorem 1. By a range we shall understand a finite set of consecutive positive integers. Thus a range N will consist of integers a+1, a+2, ..., b where $0 \le a < b$. The number |N| = b-a will be called the *length* of the range, so that a range of length l contains exactly l integers. Now let f(n) be a function defined on the positive integers, and let N be a range. We put

(5)
$$f^+(N) = \max_{n \in N} f(n), \quad f^-(N) = \min_{n \in N} f(n),$$

and

(6)
$$f^*(N) = f^+(N) - f^-(N).$$

For α in C, write

(7)
$$f(n,\alpha) = n\mu(\alpha) - Z(n,A(\alpha)).$$

The meaning of the notations $f^+(N, \alpha)$, $f^-(N, \alpha)$ and $f^*(N, \alpha)$ is then obvious.

Given a subset S of the cube C, write M(S) for the set of numbers $\mu = \mu(\alpha)$ with $\alpha \in S$. For any set M of real numbers, put $M^{(0)} = M$.

Proposition.(3) Suppose $d \ge 0$ and S is a subset of C such that $(M(S))^{(d)}$ contains a number μ in $0 < \mu < 1$. Suppose $\varepsilon > 0$. Then there is

- (i) a positive integer r,
- (ii) a directed system of vectors $\alpha(i_1, \ldots, i_d) (1 \le i_j \le l_j)$ of order d with $\alpha(i_1, \ldots, i_d) \in \mathbf{S}$ and $0 < \mu(\alpha(i_1, \ldots, i_d)) < 1$, and
- (iii) there are neighborhoods(4) $N(i_1, \ldots, i_d)$ of the numbers $\mu(\alpha(i_1, \ldots, i_d))$, with the following property:

If N is a range with $|N| \ge r$, and if

$$\beta(i_1,\ldots,i_d) \qquad (1 \leq i_1 \leq l_1,\ldots,1 \leq i_d \leq l_d)$$

is a directed system with $\mu(\beta(i_1,\ldots,i_d)) \in N(i_1,\ldots,i_d)$, but not necessarily of the same type as the directed system $\alpha(i_1,\ldots,i_d)$, then

(8)
$$(l_1 \ldots l_d)^{-1} \sum_{i_1=1}^{l_1} \ldots \sum_{i_d=1}^{l_d} f^*(N, \beta(i_1, \ldots, i_d)) \geq \frac{1}{4}(d+1) + \frac{1}{12} - \varepsilon.$$

⁽³⁾ This proposition corresponds to the proposition in [3]. Also, Lemmas 3, 7 of the present paper correspond, respectively, to Lemmas 5, 4 of [3].

⁽⁴⁾ By a neighborhood of a real number μ we understand an open interval containing μ .

It might be in order to clarify the meaning of the proposition when d = 0. In this case the directed system consists of a single vector $\alpha \in S$. The hypothesis implies only that there is an $\alpha \in S$ with $0 < \mu(\alpha) < 1$. Hence this case may be restated as follows.

Case d=0 of the proposition. Suppose $\alpha \in \mathbb{C}$ with $0 < \mu(\alpha) < 1$, and suppose $\varepsilon > 0$. Then there exists an integer r and a neighborhood \mathbb{N} of $\mu(\alpha)$ such that for every range N with $|N| \ge r$ and every β with $\mu(\beta) \in \mathbb{N}$, we have

$$f^*(N,\beta) \geq \frac{1}{4} + \frac{1}{12} - \varepsilon.$$

The proof of the proposition will be postponed until later. At present we are going to show that the proposition implies Theorem 1. We have to show that $(M_t(\kappa))^{(d)}$ is empty if $d > 8\kappa > 0$. It will suffice to show that $(M_t(\kappa))^{(d)}$ contains no element μ with $0 < \mu < 1$ if $d > 8\kappa - 1$. Put differently, it will be enough to show that if $(M_t(\kappa))^{(d)}$ contains an element μ with $0 < \mu < 1$, then

(9)
$$\kappa \geq \frac{1}{8}(d+1).$$

By what we said in §2, we may restrict ourselves to sets of \mathfrak{B}_t of the type $A(\alpha)$ with $\alpha \in \mathbb{C}$. Thus if $\overline{M}_t(\kappa)$ is the set of numbers $\mu = \mu(\alpha)$ with $E(A(\alpha)) < \kappa$, we have to show that (9) holds if there is a $\mu \in (\overline{M}_t(\kappa))^{(d)}$ with $0 < \mu < 1$. Let $S(\kappa)$ consist of the vectors α with $E(A(\alpha)) < \kappa$. Then $\overline{M}_t(\kappa) = M(S(\kappa))$. If $(\overline{M}_t(\kappa))^{(d)} = (M(S(\kappa)))^{(d)}$ contains an element μ with $0 < \mu < 1$, we apply the proposition with $\varepsilon = 1/12$, with a range N having $|N| \ge r$, and with $\beta(i_1, \ldots, i_d) = \alpha(i_1, \ldots, i_d)$ (or with $\beta = \alpha$ if d = 0), and we see that there is a $\beta \in S(\kappa)$ with

$$f^*(N,\beta) \geq \frac{1}{4}(d+1).$$

Hence either $|f^+(N,\beta)| \ge \frac{1}{8}(d+1)$ or $|f^-(N,\beta)| \ge \frac{1}{8}(d+1)$, and there is an integer $n \in N$ with $|f(n,\beta)| \ge \frac{1}{8}(d+1)$. Thus

$$D(n, \mathbf{A}(\boldsymbol{\beta})) = |Z(n, \mathbf{A}(\boldsymbol{\beta})) - n\mu(\boldsymbol{\beta})| = |f(n, \boldsymbol{\beta})| \ge \frac{1}{8}(d+1),$$

and $E(A(\beta)) \ge \frac{1}{8}(d+1)$. Since $\beta \in S(\kappa)$ and $E(A(\beta)) < \kappa$, we obtain (9).

5. An auxiliary lemma. If f(n) is a function defined on the positive integers, and if N, N' are ranges, put

(10)
$$f^{\nabla}(N,N') = \max(0,f^{-}(N)-f^{+}(N'),f^{-}(N')-f^{+}(N)).$$

Lemma 3. Let f(n), g(n) be defined on the positive integers, and let L, L' be subranges of a range N. Then

$$f^*(N) + g^*(N) \ge (f - g)^{\nabla}(L, L') + \frac{1}{2}(f^*(L) + g^*(L) + f^*(L') + g^*(L')).$$

Proof. Since both L, L' are contained in N, we have $f^*(N) \ge \max(f^*(L), P)$

 $f^*(L')$ and $g^*(N) \ge \max(g^*(L), g^*(L'))$, so that the lemma is certainly true if $(f-g)^{\nabla}(L, L') = 0$. We therefore may assume without loss of generality that

$$(f-g)^{\nabla}(L,L')=(f-g)^{-}(L)-(f-g)^{+}(L')>0.$$

Then we have for every $l \in L$ and every $l' \in L'$,

(11)
$$f(l) - g(l) - (f(l') - g(l')) \ge (f - g)^{\nabla}(L, L').$$

Let a_f , b_f , a_g , b_g be integers in L with

$$f(a_f) = f^+(L),$$
 $f(b_f) = f^-(L),$
 $g(a_e) = g^+(L),$ $g(b_e) = g^-(L),$

so that

(12)
$$f(a_f) - f(b_f) = f^*(L),$$

(13)
$$g(a_g) - g(b_g) = g^*(L).$$

Similarly, choose a'_f , b'_f , a'_g , b'_g in L' with

(14)
$$f(a_f') - f(b_f') = f^*(L'),$$

(15)
$$g(a'_{g}) - g(b'_{g}) = g^{*}(L').$$

Applying (11) with $l = a_g$, $l' = a'_f$, we get

$$f(a_{\bullet}) - g(a_{\bullet}) - f(a'_{t}) + g(a'_{t}) \ge (f - g)^{\nabla}(L, L').$$

Applying (11) with $l = b_f$, $l' = b'_g$, we obtain

$$f(b_f) - g(b_f) - f(b_g') + g(b_g') \ge (f - g)^{\nabla}(L, L').$$

Adding these two inequalities and the four equations (12), (13), (14), (15), we obtain

$$\varphi_1 + \varphi_2 + \varphi_3 + \varphi_4 \ge 2(f - g)^{\nabla}(L, L') + f^*(L) + g^*(L) + f^*(L') + g^*(L'),$$

where

$$\varphi_1 = f(a_f) - f(b_f'), \qquad \varphi_2 = g(a_g') - g(b_g),
\varphi_3 = f(a_g) - f(b_g'), \qquad \varphi_4 = g(a_f') - g(b_f).$$

Since $f^*(N) \ge \max(\varphi_1, \varphi_3)$ and $g^*(N) \ge \max(\varphi_2, \varphi_4)$, the lemma follows. The lemma will not be used until §11.

6. The case d=0 of the proposition. Write $\|\xi\|$ for the distance from a real number ξ to the nearest integer. Suppose $\mu=\mu(\alpha)$ lies in the open interval $0 < \mu < 1$. Then there is a positive integer q such that $\|\mu q\| \ge \frac{1}{3}$. This follows

from Kronecker's theorem if μ is irrational, and is easily proved if μ is rational, the worst case being when $\mu = \frac{1}{3}$ or $\frac{2}{3}$. Choose a neighborhood N of μ such that $|\mu' - \mu| < \varepsilon/q$ for every $\mu' \in \mathbb{N}$. Then for every β with $\mu(\beta) \in \mathbb{N}$,

$$\|\mu(\beta)q\| > \frac{1}{2} - \varepsilon$$
.

Now put r=q+1, and let $N=\{a+1,a+2,\ldots,b\}$ be a range of length $|N|\geq r$. Then there are two integers n, n' in N, e.g. n=a+1 and n'=a+1+q, such that

$$||n\mu(\beta) - n'\mu(\beta)|| > \frac{1}{3} - \varepsilon.$$

Hence

$$|f(n',\beta)-f(n,\beta)| \geq ||n\mu(\beta)-n'\mu(\beta)|| > \frac{1}{4}-\varepsilon$$

and in the notation of (6) we have

$$f^*(N,\beta) > \frac{1}{3} - \varepsilon = \frac{1}{4} + \frac{1}{12} - \varepsilon.$$

This finishes the proof of the case d = 0 of the proposition. The proposition in general will later be proved by induction on d.

7. Kronecker type lemmas.

Lemma 4. There are positive valued functions $f_1(y_0)$, $f_2(y_0, y_1)$, $f_3(y_0, y_1, y_2)$, ..., defined for nonzero y_0, y_1, y_2, \ldots , with the following property:

Suppose l is a positive integer and

(16)
$$0 < \varepsilon < 1, \quad 0 < |\delta_1| < f_1(\varepsilon), \quad 0 < |\delta_2| < f_2(\varepsilon, \delta_1), \quad \dots, \\ 0 < |\delta_\ell| < f_\ell(\varepsilon, \delta_1, \dots, \delta_{\ell-1}).$$

Then there is a positive integer $p = p(l, \varepsilon, \delta_1, ..., \delta_l)$ such that, for every range N with $|N| \ge p$ and arbitrary $\alpha_1, ..., \alpha_l$, there is an $n \in N$ with

Proof. Put $f_1(y_0) = |y_0|$. Suppose $0 < \varepsilon < 1$ and $0 < |\delta_1| < f_1(\varepsilon) = \varepsilon$. Suppose at first that $\delta_1 > 0$, and put $p = [1/\delta_1] + 1$, where $[\xi]$ denotes the integer part of a real number ξ . The numbers $z_0 = 0$, $z_1 = \delta_1, \ldots, z_{p-1} = [1/\delta_1]\delta_1$ lie in $0 \le z \le 1$, and given any α there is a z_i with $\{z_i - \alpha\} < \delta_1 < \varepsilon$. Thus there is an n with $0 \le n \le p - 1$ and $\{\delta_1 n - \alpha\} < \varepsilon$. Since this holds for every α , it is easily seen that in every range N with $|N| \ge p$, there is an n with $\{\delta_1 n - \alpha\} < \varepsilon$. The situation is similar if $\delta_1 < 0$.

Now suppose $l \ge 2$ and f_1, \ldots, f_{l-1} have been constructed and have the desired properties. Suppose

(18)
$$0 < \varepsilon < 1, 0 < |\delta_1| < f_1(\varepsilon), \ldots, 0 < |\delta_{l-1}| < f_{l-1}(\varepsilon, \delta_1, \ldots, \delta_{l-2}).$$

Put $p' = p(l-1, \varepsilon, \delta_1, \dots, \delta_{l-1})$ and

(19)
$$f_l(\varepsilon, \delta_1, \ldots, \delta_{l-1}) = \varepsilon/2p'.$$

(Clearly, it does not matter how we define f_l if (18) is violated.) Suppose

$$(20) 0 < |\delta_l| < f_l(\varepsilon, \delta_1, \dots, \delta_{l-1}).$$

Then $0 < |\delta_l| < \frac{1}{2}\varepsilon = f_1(\frac{1}{2}\varepsilon)$, and by the case $l = -\infty$ if the lemma there is a $p'' = p(1, \frac{1}{2}\varepsilon, \delta_l)$ such that for every range N'' with $|N'| \ge p''$ and every α_l , there is an $n'' \in N''$ with $|\delta_l n'' - \alpha_l| < \frac{1}{2}\varepsilon$. Put

$$p = p(l, \varepsilon, \delta_1, \ldots, \delta_l) = p' + p''.$$

Now let $\alpha_1, \ldots, \alpha_l$ be arbitrary, and let N be a range with $|N| \geq p$. Assume at first that $\delta_l > 0$, and let N'' be the subrange of N with |N''| = p'' and with its smallest element the same as that of N. There is an $n'' \in N''$ with $\{\delta_l n'' - \alpha_l\}$ $\leq \frac{1}{2}\varepsilon$. Let N' be the range n'', n'' + 1, ..., n'' + p' - 1, so that $N' \subseteq N$. There is an $n \in N'$ with

$$\{\delta_i n - \alpha_i\} < \varepsilon \qquad (i = 1, \ldots, l-1).$$

Furthermore, $\{\delta_l n - \alpha_l\} = \{\delta_l (n - n'') + \delta_l n'' - \alpha_l\} = \delta_l (n - n'') + \{\delta_l n'' - \alpha_l\}$ $< \delta_l p' + \frac{1}{2} \varepsilon < \varepsilon$ by (19) and (20). Hence (17) holds for i = 1, ..., l.

The situation is analogous if $\delta_l < 0$. In this case we let the largest element of N'' coincide with that of N.

Lemma 5. Suppose l is a positive integer and suppose ε , $\delta_1, \ldots, \delta_l$ satisfy (16). Let $p = p(l, \varepsilon, \delta_1, \ldots, \delta_l)$ be the number p of Lemma 4. There are neighborhoods \mathbf{D}_1 of $\delta_1, \ldots, \mathbf{D}_l$ of δ_1 (which may depend on $l, \varepsilon, \delta_1, \ldots, \delta_l$) with the following property:

Suppose N, N' are ranges with lengths $|N| \ge p$, $|N'| \ge p$. Suppose $\eta_1 \in \mathbf{D}_1, \ldots, \eta_l \in \mathbf{D}_l$. Then there are integers $n \in N$, $n' \in N'$ such that

Proof. Choose the neighborhood D_i of δ_i so small that

$$(22) p|\eta_i - \delta_i| < \frac{1}{2}\varepsilon$$

for every $\eta_i \in \mathbf{D}_i (i = 1, ..., l)$. Now if N, N' are ranges with $|N| \ge p$, $|N'| \ge p$, pick n' arbitrary in N' and let n_0 be the smallest element in N.

Suppose $\eta_1 \in \mathbf{D}_1, \ldots, \eta_l \in \mathbf{D}_l$ are given. Put

$$\alpha_i = (n' - n_0)\eta_i + n_0\delta_i + \frac{1}{2} - \frac{1}{2}\varepsilon$$
 $(i = 1, ..., l).$

By Lemma 4 there is an $n \in N$ with $n_0 \le n \le n_0 + p - 1$ and with $\{n\delta_i - \alpha_i\}$ $\le \epsilon(i = 1, ..., l)$. This is the same as

$$\frac{1}{2} - \frac{1}{2}\varepsilon \leq \{n\delta_i - (n' - n_0)\eta_i - n_0\delta_i\} < \frac{1}{2} + \frac{1}{2}\varepsilon.$$

Now

$$n\eta_i - n'\eta_i = n\delta_i - (n' - n_0)\eta_i - n_0\delta_i + (n - n_0)(\eta_i - \delta_i),$$

and since $|n - n_0| < p$ and since η_i in \mathbf{D}_i satisfies (22) and hence $|n - n_0| |\eta_i - \delta_i| < \frac{1}{2}\varepsilon$, we obtain $\frac{1}{2} - \varepsilon < \{n\eta_i - n'\eta_i\} < \frac{1}{2} + \varepsilon$, which is equivalent to (21).

We shall say that a function g(n) is of the type η , where η is a real number, if

$${g(n+1)-g(n)-\eta}=0 \qquad (n=1,2,...).$$

If N, N' are ranges of positive integers, we put

(23)
$$g^{\square}(N,N') = \min_{n \in N} \min_{n' \in N'} |g(n) - g(n')|.$$

This is not to be confused with the notation $f^{\nabla}(N, N')$ of (10).

Lemma 6. Suppose l, ε , δ_1 , ..., δ_l and p and \mathbf{D}_1 , ..., \mathbf{D}_l are as in Lemma 5. Let r be a positive integer, and assume that δ_1 , ..., δ_l satisfy the inequalities

$$(24) 0 < |\delta_i| < \varepsilon/(2r) (i = 1, \ldots, l),$$

and in fact that every $\eta_i \in \mathbf{D}_i$ satisfies

$$|\eta_i| < \varepsilon/(2r).$$

Then there is an integer $p^* = p^*(l, \varepsilon, \delta_1, \ldots, \delta_l; r)$, such that if $\eta_1 \in \mathbf{D}_1, \ldots, \eta_l \in \mathbf{D}_l$, and if $g_1(n), \ldots, g_l(n)$ are functions of the types η_1, \ldots, η_l , respectively, and if N, N' are ranges with $|N| \ge p^*$, $|N'| \ge p^*$, then there are subranges $L \subseteq N$, $L' \subseteq N'$ with

$$|L|=|L'|=r$$

and with

(27)
$$g_i^{\Box}(L,L') > \frac{1}{2} - 2\varepsilon \quad (i = 1,...,l).$$

Proof. Put $p^* = \max(p, r)$. Suppose $\eta_1 \in \mathbf{D}_1, \ldots, \eta_l \in \mathbf{D}_l$ and $|N| \ge p^*$, $|N'| \ge p^*$. By Lemma 5, there are integers $n \in N$ and $n' \in N'$ with (21). There is a range $L \subseteq N$ with $n \in L$ and |L| = r, and a range $L' \subseteq N'$ with $n' \in L'$ and |L'| = r. For $m \in L$ and $m' \in L'$ we have $|(m-n)\eta_i| \le r|\eta_i| < \frac{1}{2}\varepsilon$ and $|(m'-n')\eta_i| < \frac{1}{2}\varepsilon$, so that, by (21),

$$|g_i(m) - g_i(m')| \ge ||g_i(m) - g_i(m')|| = ||m\eta_i - m'\eta_i||$$

$$= ||n\eta_i - n'\eta_i + (m-n)\eta_i - (m'-n')\eta_i|| > \frac{1}{2} - \varepsilon - 2\varepsilon/2 > \frac{1}{2} - 2\varepsilon.$$

Thus (27) holds.

8. Functions $f(n, \alpha, \beta)$. For α , β in C, put

(28)
$$f(n,\alpha,\beta) = f(n,\alpha) - f(n,\beta) \\ = n(\mu(\alpha) - \mu(\beta)) - (Z(n,A(\alpha)) - Z(n,A(\beta))).$$

The function $f(n, \alpha, \beta)$ is of the type $\eta = \mu(\alpha) - \mu(\beta)$.

Lemma 7. Suppose $\alpha_1, \alpha_2, \ldots$ are elements of C such that the numbers $\mu(\alpha_1), \mu(\alpha_2), \ldots$ are all distinct and converge to a number μ with $0 < \mu < 1$. Suppose $0 < \varepsilon < 1, l \ge 1, r \ge 1$.

There is a finite subsequence $\alpha(1), \ldots, \alpha(2l)$ of $\alpha_1, \alpha_2, \ldots$ with $0 < \mu(\alpha(j)) < 1 (j = 1, \ldots, 2l)$, and there are neighborhoods N_j of $\mu(\alpha(j))$, and there is an integer q, with the following properties:

For any $\beta(1), \ldots, \beta(2l)$ with $\mu(\beta(j)) \in N_i(j = 1, \ldots, 2l)$, we have

(29)
$$|\mu(\beta(2i-1)) - \mu(\beta(2i))| < \varepsilon/(4r) \quad (i=1,\ldots,l).$$

Furthermore, if N, N' are ranges with $|N| \ge q$, $|N'| \ge q$, there are subranges $L \subseteq N$, $L' \subseteq N'$ with

$$|L|=|L'|=r$$

and with

(31)
$$f^{\square}(L, L', \beta(2i-1), \beta(2i)) > \frac{1}{2} - \varepsilon$$
 $(i = 1, ..., l)$.

Proof. There is an integer j_1 with

$$0<|\mu(\alpha_{j_1})-\mu(\alpha_{j_1+1})|<\min(f_1(\tfrac{1}{2}\varepsilon),\varepsilon/(4r)),$$

where f_1 is the function of Lemma 4. Put $\delta_1 = \mu(\alpha_{j_1}) - \mu(\alpha_{j_1+1})$. There is a $j_2 > j_1 + 1$ such that

$$0<|\mu(\alpha_{i_2})-\mu(\alpha_{i_2+1})|<\min(f_2(\tfrac{1}{2}\varepsilon,\delta_1),\varepsilon/(4r)).$$

Put $\delta_2 = \mu(\alpha_{j_2}) - \mu(\alpha_{j_2+1})$. We continue in this manner, and choose integers $j_1 < j_1 + 1 < j_2 < j_2 + 1 < \ldots < j_l < j_l + 1$, such that the numbers

$$\delta_i = \mu(\alpha_{i,}) - \mu(\alpha_{i,+1}) \qquad (i = 1, \ldots, l)$$

satisfy (16) and (24), with ε replaced by $\varepsilon/2$. Let $\mathbf{D}_i = \mathbf{D}_i(l, \varepsilon/2, \delta_1, \dots, \delta_l)$ ($i = 1, \dots, l$) and $p^* = p^*(l, \varepsilon/2, \delta_1, \dots, \delta_l; r)$ be as in Lemma 6. Put

$$\alpha(1) = \alpha_{j_1}, \quad \alpha(2) = \alpha_{j_1+1}, \quad \cdots, \quad \alpha(2l-1) = \alpha_{j_2}, \quad \alpha(2l) = \alpha_{j_2+1},$$

so that $\mu(\alpha(2i-1)) - \mu(\alpha(2i)) = \delta_i(i=1,\ldots,l)$. Choose neighborhoods N_j of $\mu(\alpha(j))(j=1,\ldots,2l)$ so small that $\mu_{2i-1} - \mu_{2i} \in D_i$ if $\mu_{2i-1} \in N_{2i-1}$ and μ_{2i}

 $\in N_{2l}$. Then if $\beta(1), \ldots, \beta(2l)$ are vectors with $\mu(\beta(j)) \in N_j (j = 1, \ldots, 2l)$, (29) follows from the condition (25) (but with $\varepsilon/2$ in place of ε) on the neighborhoods D_1, \ldots, D_l .

Now suppose that $|N| \ge q$, $|N'| \ge q$ where $q = p^*(l, \varepsilon/2, \delta_1, \ldots, \delta_l; r)$. The function $g_i(n) = f(n, \beta(2i-1), \beta(2i))$ is of the type $\mu(\beta(2i-1)) - \mu(\beta(2i)) = \eta_i$, say, where $\eta_i \in \mathbf{D}_i(i=1,\ldots,l)$. By Lemma 6, there are ranges $L \subseteq N$, $L' \subseteq N'$ with (26) and (27) (but with ε replaced by $\varepsilon/2$), i.e. with (30) and (31). This finishes the proof of Lemma 7.

Suppose again that g(n) is a function of the type η . We shall say that g has a jump at n if either n = 1 and $g(1) \neq \eta$, or if n > 1 and $g(n) - g(n - 1) - \eta \neq 0$. Recall that the function $f(n, \alpha, \beta)$ is defined in terms of a given sequence x_1, x_2, \ldots .

Lemma 8. The function $f(n, \alpha, \beta)$ of the type $\mu(\alpha) - \mu(\beta)$ has a jump at n if and only if

$$x_n \in A(\alpha)^A(\beta)$$
.

Proof. $f(n, \alpha, \beta)$ has a jump at n precisely if

$$Z(n, \mathbf{A}(\boldsymbol{\beta})) - Z(n, \mathbf{A}(\boldsymbol{\alpha})) - (Z(n-1, \mathbf{A}(\boldsymbol{\beta})) - Z(n-1, \mathbf{A}(\boldsymbol{\alpha}))) \neq 0.$$

(Here we set Z(0, A) = 0.) This holds if and only if $x_n \in A(\alpha)^A(\beta)$.

9. The construction of directed systems. Suppose the numbers $\alpha(i_1, \ldots, i_d)$ with $1 \le i_1 \le l_1, \ldots, 1 \le i_d \le l_d$ belong to a directed system of the type (u_1, \ldots, u_d) . Let u be < or = or >. Put

$$(u_1^*, \dots, u_d^*, u_{d+1}^*) = (u_1, \dots, u_d, u)$$
 if u_d is not =,
 $= (u_1, \dots, u_k, u, \dots, u)$ if for some $k < d$, the symbols
$$u_{k+1}, \dots, u_d \text{ are } =, \text{ and either } k = 0 \text{ or } u_k \text{ is not } =.$$

We shall describe a process of constructing a directed system of order d+1 of the type $(u_1^*,\ldots,u_d^*,u_{d+1}^*)$. Let K be the set of d-tuples (i_1,\ldots,i_d) with $1\leq i_1\leq l_1,\ldots,1\leq i_d\leq l_d$. A subset H of K will be called a segment if $(i_1,\ldots,i_d)\in H$ whenever $(i'_1,\ldots,i'_d)\in H$ and $(i_1,\ldots,i_d)<_j(i'_1,\ldots,i'_d)$ for some j. Let l_{d+1} be an integer greater than 1. A partial directed system of order d+1 on H will mean a system of numbers $\alpha(i_1,\ldots,i_d,i_{d+1})$ defined for $(i_1,\ldots,i_d)\in H$ and $1\leq i_{d+1}\leq l_{d+1}$, such that

- (a) $\alpha(i_1, \ldots, i_d, i_{d+1}) u_j^* \alpha(i'_1, \ldots, i'_d, i'_{d+1})$ if $(i_1, \ldots, i_d) \in H$, $(i'_1, \ldots, i'_d) \in H$ and $(i_1, \ldots, i_d, i_{d+1}) <_j (i'_1, \ldots, i'_d, i'_{d+1})$ for some j in $1 \le j \le d+1$.
- (b) $\alpha(i_1, \ldots, i_d, i_{d+1}) u_j^* \alpha(i'_1, \ldots, i'_d)$ if $(i_1, \ldots, i_d) \in H$, $(i'_1, \ldots, i'_d) \notin H$ and $(i_1, \ldots, i_d) <_i (i'_1, \ldots, i'_d)$ for some j in $1 \le j \le d$.

In particular, if H is empty, the empty set is a partial system defined on H. If H = K, a partial directed system on H is a directed system of order d + 1.

Lemma 9. Suppose H is a segment, and H^* the segment which consists of H and a single further d-tuple (t_1, \ldots, t_d) . Suppose

$$\alpha(i_1,\ldots,i_d,i_{d+1})$$
 $((i_1,\ldots,i_d)\in H, 1\leq i_{d+1}\leq l_{d+1})$

is a partial directed system defined on $H.(^5)$ Suppose there is a sequence $\alpha_s(t_1,\ldots,t_d)(s=1,2,\ldots)$ which is monotonic of the type u and tends to $\alpha(t_1,\ldots,t_d)$. Then if s_0 is sufficiently large, and if we put

(32)
$$\alpha(t_1, \ldots, t_d, i) = \alpha_{s_0+i}(t_1, \ldots, t_d) \quad (1 \le i \le l_{d+1}),$$

then the numbers

$$\alpha(i_1,\ldots,i_d,i_{d+1}) \quad ((i_1,\ldots,i_d) \in H^*, 1 \leq i_{d+1} \leq l_{d+1})$$

are a partial directed system defined on H*.

Proof. The condition (a) is satisfied if (i_1, \ldots, i_d) , $(i'_1, \ldots, i'_d) \in H$. In order that it also be satisfied for H^* , we have to satisfy the following two conditions.

$$(a_1^*)$$
 $\alpha(i_1,\ldots,i_d,i_{d+1})u_j^*\alpha(t_1,\ldots,t_d,i_{d+1}')$ if $(i_1,\ldots,i_d) < (t_1,\ldots,t_d)$

for some j in $1 \le j \le d$.

$$(a_2^*) \qquad \alpha(t_1,\ldots,t_d,i_{d+1}) u_{d+1}^* \alpha(t_1,\ldots,t_d,i_{d+1}') \quad \text{if } i_{d+1} < i_{d+1}'.$$

Since (t_1, \ldots, t_d) is the only new element in H^* , (b) will be satisfied for H^* if

(b*)
$$\alpha(t_1, \ldots, t_d, i_{d+1}) u_j^* \alpha(i_1', \ldots, i_d')$$
 whenever $(t_1, \ldots, t_d) \leq (i_1', \ldots, i_d')$.

Now since $\alpha_s(t_1, \ldots, t_d)$ $(s = 1, 2, \ldots)$ is monotonic of the type $u = u_{d+1}^*$, the condition (a_2^*) will be satisfied if $\alpha(t_1, \ldots, t_d, i)$ is given by (32), no matter how we choose s_0 .

Now suppose that $1 \le j \le d$ and u_j^* is not =. Suppose $(i_1, \ldots, i_d) <_j (t_1, \ldots, t_d)$. Since (i_1, \ldots, i_d) is in H and (t_1, \ldots, t_d) is not in H, we have $\alpha(i_1, \ldots, i_d, i_{d+1}) u_j^* \alpha(t_1, \ldots, t_d)$ by the hypothesis (b). Since $\alpha_s(t_1, \ldots, t_d) (s = 1, 2, \ldots)$ tends to $\alpha(t_1, \ldots, t_d)$, (a_1^*) will be satisfied if s_0 in (32) is sufficiently large. Next, suppose that $1 \le j \le d$ and u_j^* is =. Then also u_j and u are =. Suppose $(i_1, \ldots, i_d) <_j (t_1, \ldots, t_d)$. Then $\alpha(i_1, \ldots, i_d, i_{d+1}) = \alpha(t_1, \ldots, t_d)$ by (b). Since $\alpha_s(t_1, \ldots, t_d) = \alpha(t_1, \ldots, t_d) (s = 1, 2, \ldots)$, (a_1^*) will certainly be true. Thus (a_1^*) can always be satisfied.

Now suppose that $1 \le j \le d$ and u_j is not =. Then u_j^* equals u_j and is not =. Since $\alpha(i_1, \ldots, i_d)$ is a directed system of the type (u_1, \ldots, u_d) , we have $\alpha(t_1, \ldots, t_d) u_j^* \alpha(i'_1, \ldots, i'_d)$ if $(t_1, \ldots, t_d) <_j (i'_1, \ldots, i'_d)$. Since $\alpha_s(t_1, \ldots, t_d)(s = 1, 2, \ldots)$ tends to $\alpha(t_1, \ldots, t_d)$, (b*) will be true if s_0 in (32) is sufficiently large. Finally, suppose that $1 \le j \le d$ and u_j is =. Then u_j^* is u. Since $\alpha(i_1, \ldots, i_d)$ is

⁽⁵⁾ This part of the hypothesis does not apply if H is empty. Obvious changes have to be made in the proof in this case.

a directed system of the type (u_1, \ldots, u_d) , we have $\alpha(t_1, \ldots, t_d) = \alpha(i'_1, \ldots, i'_d)$ if $(t_1, \ldots, t_d) <_j (i'_1, \ldots, i'_d)$. Since $\alpha_s(t_1, \ldots, t_d)$ is monotonic of the type u and tends to $\alpha(t_1, \ldots, t_d)$, we have $\alpha(t_1, \ldots, t_a, i_{d+1}) u \alpha(t_1, \ldots, t_d) = \alpha(i'_1, \ldots, i'_d)$, i.e. $\alpha(t_1, \ldots, t_d, i_{d+1}) u_i^* \alpha(i'_1, \ldots, i'_d)$. Thus (b^*) will be satisfied.

This finishes the proof of Lemma 9. It is clear that by using an inductive argument and using Lemma 9 at each step, we can gradually build up a directed system of order d + 1 of the type $(u_1^*, \ldots, u_{d+1}^*)$.

Now suppose that $\alpha(i_1, \ldots, i_d)$ with $1 \le i_1 \le l_1, \ldots, 1 \le i_d \le l_d$ is a directed system of vectors of the type $(u_{ih})(1 \le i \le d, 1 \le h \le m)$. Let u_1, \ldots, u_m be symbols <, = or >. For each h in $1 \le h \le m$, put

$$(u_{1h}^*, \dots, u_{dh}^*, u_{d+1,h}^*) = (u_{1h}, \dots, u_{dh}, u_h)$$
 if u_{dh} is not =,
 $= (u_{1h}, \dots, u_{k_h,h}, u_h, \dots, u_h)$ if $u_{k_h+1,h}, \dots, u_{dh}$ are =,
and if either $k_h = 0$ or $u_{k_h,h}$ is not =.

We shall indicate a process to construct a directed system of vectors of order d+1 of the type $(u_{ih}^*)(1 \le i \le d+1, 1 \le m \le h)$. A partial directed system of vectors of order d+1 on a segment H is defined in the obvious way.

Lemma 10. Suppose H is a segment and H^* is the segment consisting of H and of a single further d-tuple (t_1, \ldots, t_d) . Suppose

$$\alpha(i_1,\ldots,i_d,i_{d+1})$$
 $((i_1,\ldots,i_d)\in H,1\leq i_{d+1}\leq l_{d+1})$

is a partial directed system defined on H.(6) Suppose there is a sequence of vectors $\alpha_s(t_1,\ldots,t_d)$ ($s=1,2,\ldots$) which converges to $\alpha(t_1,\ldots,t_d)$, and which is monotonic of the type (u_1,\ldots,u_m) . Then if s_0 is sufficiently large, and if we put

(33)
$$\alpha(t_1, \ldots, t_d, i) = \alpha_{s_0+i}(t_1, \ldots, t_d) \quad (1 \le i \le l_{d+1}),$$

then the vectors

$$\alpha(i_1,\ldots,i_d,i_{d+1})$$
 $((i_1,\ldots,i_d)\in H^*, 1\leq i_{d+1}\leq l_{d+1})$

are a partial directed system defined on H*.

Proof. We may use induction on the number m of components of our vectors, and use Lemma 9 at each step of the induction.

10. Inductive proof of the proposition. Let S be a subset of the cube C. A vector α will be called a *limit point* of S if there is a sequence $\alpha_1, \alpha_2, \ldots$ of elements of S which converge to α and which have distinct values $\mu(\alpha_1), \mu(\alpha_2), \ldots$ (This condition is more restrictive than the usual condition that $\alpha_1, \alpha_2, \ldots$ be distinct.) Let $S^{(1)}$ be the set of limit points of S. Since $\mu(\alpha)$ is a continuous function of α , it is clear that $M(S^{(1)}) \subseteq M^{(1)}(S)$. Conversely, if $\mu \in M^{(1)}(S)$, there are distinct elements $\mu_1 = \mu(\alpha_1), \mu_2 = \mu(\alpha_2), \ldots$ of M(S) with $\alpha_1, \alpha_2, \ldots$ in S and with

⁽⁶⁾ See the footnote to Lemma 9.

 $\mu_i \to \mu$. There is a convergent subsequence of $\alpha_1, \alpha_2, \ldots$; let us denote the limit of this subsequence by α . Then $\alpha \in S^{(1)}$ and $\mu = \mu(\alpha)$, so that $\mu \in M(S^{(1)})$. Hence

(34)
$$M^{(1)}(S) = M(S^{(1)}).$$

Every sequence $\alpha_1, \alpha_2, \ldots$ has a subsequence which is monotonic of some type (u_1, \ldots, u_m) . If the numbers $\mu(\alpha_1), \mu(\alpha_2), \ldots$ are all distinct, this type cannot be $(=, \ldots, =)$. Hence if $S^{(1)}(u_1, \ldots, u_m)$ consists of the elements $\alpha \in S^{(1)}$ for which there is a monotonic sequence $\alpha_1, \alpha_2, \ldots$ in S of the type (u_1, \ldots, u_m) which tends to α and has distinct $\mu(\alpha_1), \mu(\alpha_2), \ldots$, then $S^{(1)}$ is the union of the $3^m - 1$ sets $S^{(1)}(u_1, \ldots, u_m)$ with (u_1, \ldots, u_m) not $(=, \ldots, =)$.

Now assume that $d \ge 0$ and that $M^{(d+1)}(S)$ contains an element μ with $0 < \mu < 1$. By (34) we have $M^{(d+1)}(S) = M^{(d)}(S^{(1)})$, so that μ lies in one of the $3^m - 1$ sets $M^{(d)}(S^{(1)}(u_1, \ldots, u_m))$ with (u_1, \ldots, u_m) not $(=, \ldots, =)$. Suppose (u_1, \ldots, u_m) is a particular m-tuple with

$$\mu \in M^{(d)}(S^{(1)}(u_1,\ldots,u_m)).$$

We now assume the truth of the proposition for our particular value of d and apply it to $S^{(1)}(u_1, \ldots, u_m)$. There is an integer $r = r^{(d)}$, a directed system $\alpha(i_1, \ldots, i_d)$ with elements in $S^{(1)}(u_1, \ldots, u_m)$, and there are neighborhoods $N(i_1, \ldots, i_d)$ with the properties enunciated in the proposition. Suppose this directed system

$$\alpha(i_1,\ldots,i_d) \qquad (1 \leq i_1 \leq l_1,\ldots,1 \leq i_d \leq l_d)$$

is of the type $(u_{ih})(1 \le i \le d, 1 \le h \le m)$. Construct $(u_{ih}^*)(1 \le i \le d + 1, 1 \le h \le m)$ as in §9. The goal of the present section is a proof of the following

Lemma 11. Suppose $l_{d+1} = 2l > 0$, r > 0, $\varepsilon > 0$. There is a directed system

$$\alpha(i_1,\ldots,i_d,i_{d+1})$$
 $(1 \leq i_1 \leq l_1,\ldots,1 \leq i_{d+1} \leq l_{d+1})$

of the type $(u_{ih}^*)(1 \le i \le d+1, 1 \le h \le m)$, all of whose vectors α lie in S and have $0 < \mu(\alpha) < 1$, and there are neighborhoods $N(i_1, \dots, i_{d+1})$ of $\mu(\alpha(i_1, \dots, i_{d+1}))$, such that

(35)
$$N(i_1, \ldots, i_d, i_{d+1}) \subseteq N(i_1, \ldots, i_d)$$
 $(1 \le i_1 \le l_1, \ldots, 1 \le i_{d+1} \le l_{d+1}).$
Also, if $\beta \in N(i_1, \ldots, i_d, 2j - 1)$, $\beta' \in N(i_1, \ldots, i_d, 2j)$ with $1 \le i_1 \le l_1, \ldots, 1 \le i_d \le l_d$ and with $1 \le j \le l$, then

$$|\mu(\beta) - \mu(\beta')| < \varepsilon/4r.$$

Finally, there is an integer p such that if N, N' are ranges with $|N| \ge p$, $|N'| \ge p$, and if vectors $\beta(i_1, \ldots, i_d, i_{d+1})$ have $\mu(\beta(i_1, \ldots, i_{d+1})) \in N(i_1, \ldots, i_{d+1})$ for $1 \le i_1 \le l_1, \ldots, 1 \le i_{d+1} \le l_{d+1}$, then there are subranges $L \subseteq N$, $L' \subseteq N'$ with

$$|L| = |L'| = r$$

and with

(38)
$$f^{\square}(L, L', \beta(i_1, \dots, i_d, 2j-1), \beta(i_1, \dots, i_d, 2j)) > \frac{1}{2} - \varepsilon$$

 $(1 \le i_1 \le l_1, \dots, 1 \le i_d \le l_d, 1 \le j \le l).$

We shall prove this lemma by constructing partial directed systems of order d+1 defined on segments, and by gradually increasing these segments.

Lemma 12. Suppose $l_{d+1} = 2l > 0$, v > 0, $\varepsilon > 0$. Let H be a nonempty segment. There is a partial directed system

$$\alpha(i_1,\ldots,i_d,i_{d+1})$$
 $((i_1,\ldots,i_d)\in H,1\leq i_{d+1}\leq l_{d+1})$

of the type (u_{ih}^*) with all the vectors α in S and satisfying $0 < \mu(\alpha) < 1$, and there are neighborhoods $N(i_1, \ldots, i_d, i_{d+1})$ of $\mu(\alpha(i_1, \ldots, i_d, i_{d+1}))$, defined for $(i_1, \ldots, i_d) \in H$, $1 \le i_{d+1} \le l_{d+1}$, such that

(39)
$$N(i_1, \ldots, i_d, i_{d+1}) \subseteq N(i_1, \ldots, i_d)$$
 $((i_1, \ldots, i_d) \in H, 1 \le i_{d+1} \le l_{d+1}),$ and such that

$$|\mu(\boldsymbol{\beta}) - \mu(\boldsymbol{\beta}')| < \varepsilon/4\nu$$

if $\beta \in N(i_1, \ldots, i_d, 2j-1)$, $\beta' \in N(i_1, \ldots, i_d, 2j)$ for some $(i_1, \ldots, i_d) \in H, 1 \le j \le l$. There is an integer p = p(H) such that if N, N' are ranges with $|N| \ge p(H)$, $|N'| \ge p(H)$, and if $\beta(i_1, \ldots, i_d, i_{d+1}) \in N(i_1, \ldots, i_d, i_{d+1})$ ($(i_1, \ldots, i_d) \in H, 1 \le i_{d+1} \le l_{d+1}$), then there are subranges $L \subseteq N$, $L' \subseteq N'$ with

$$|L| = |L'| = v$$

and with

$$f^{\square}(L, L', \beta(i_1, \dots, i_d, 2j-1), \beta(i_1, \dots, i_d, 2j)) > \frac{1}{2} - \varepsilon$$

$$((i_1, \dots, i_d) \in H, 1 \le j \le l).$$

The case when H = K, the set of all d-tuples (i_1, \ldots, i_d) , is Lemma 11.

Proof of Lemma 12. We shall proceed by "induction on H". We shall assume that H is a segment properly contained in K, and that either H is empty, or H is nonempty and Lemma 12 is true for H. There is a unique segment H^* which consists of H and a single further d-tuple (t_1, \ldots, t_d) . We shall now prove Lemma 12 for H^* . We shall tacitly assume that H is nonempty; the necessary modifications in the argument when H is empty are trivial.

Suppose $\alpha(i_1,\ldots,i_d,i_{d+1})$ defined for $(i_1,\ldots,i_d)\in H$, $1\leq i_{d+1}\leq l_{d+1}$, and respective neighborhoods $N(i_1,\ldots,i_d,i_{d+1})$ and the number p=p(H) have the

desired properties as enunciated in Lemma 12 with respect to H.

Since $\alpha(t_1, \ldots, t_d)$ lies in $S^{(1)}(u_1, \ldots, u_m)$, there is a monotonic sequence $\alpha_s(t_1, \ldots, t_d)(s = 1, 2, \ldots)$ of the type (u_1, \ldots, u_m) which tends to $\alpha(t_1, \ldots, t_d)$, and is such that the numbers $\mu(\alpha_s(t_1, \ldots, t_d))(s = 1, 2, \ldots)$ are all distinct. We now put r = p(H) + v and apply Lemma 7 to l, r, ε and to the sequence $\alpha_1(t_1, \ldots, t_d), \alpha_2(t_1, \ldots, t_d), \ldots$. There is a finite subsequence

(43)
$$\alpha(t_1,\ldots,t_a,1),\ldots,\alpha(t_1,\ldots,t_d,2l),$$

and there are neighborhoods $N(t_1, \ldots, t_d, i)$ of $\mu(\alpha(t_1, \ldots, t_d, i))(1 \le i \le 2l)$, and there is an integer q, with the following properties. For any $\beta(t_1, \ldots, t_d, 1)$, $\ldots, \beta(t_1, \ldots, t_d, 2l)$ with $\mu(\beta(t_1, \ldots, t_d, i)) \in N(t_1, \ldots, t_d, i)(1 \le i \le 2l)$, we have

$$(44) \qquad |\mu(\beta(t_1,\ldots,t_d,2j-1)) - \mu(\beta(t_1,\ldots,t_d,2j))| < \varepsilon/4r < \varepsilon/4v$$

$$(1 \le j \le l).$$

Furthermore, if N, N' are ranges with $|N| \ge q$, $|N'| \ge q$, there are subranges $N_H \subseteq N$, $N'_H \subseteq N'$ with

$$|N_H| = |N'_H| = r > p(H)$$

and with

(46)
$$f^{\square}(N_H, N'_H, \beta(t_1, \ldots, t_d, 2j-1), \beta(t_1, \ldots, t_d, 2j)) > \frac{1}{2} - \varepsilon$$
 $(1 \le j \le l)$.

Now the sequence $\alpha_s(t_1,\ldots,t_d)$ $(s=1,2,\ldots)$ may be replaced by a subsequence with $\mu(\alpha_s(\cdots))$ contained in $N(t_1,\cdots,t_d)$, and hence the sequence (43) can be chosen so that all its measures μ lie in $N(t_1,\cdots,t_d)$. The neighborhoods $N(t_1,\cdots,t_d,i)$ can be chosen so small that $N(t_1,\cdots,t_d,i)\subseteq N(t_1,\cdots,t_d)$ $(1 \le i \le 2l)$. This, together with the "inductive" assumption (39) yields

(47)
$$N(i_1, \ldots, i_d, i_{d+1}) \subseteq N(i_1, \ldots, i_d)$$
 $((i_1, \ldots, i_d) \in H^*, 1 \le i_{d+1} \le l_{d+1}).$

The "inductive" assumption (40) for H together with (44) gives a condition like (40) for H^* . Lemma 10 shows that, moreover, the sequence (43) can be chosen so that $\alpha(i_1, \ldots, i_d, i_{d+1})$ with $(i_1, \ldots, i_d) \in H^*$, $1 \le i_{d+1} \le l_{d+1}$, is a partial directed system on H^* .

Now suppose $\beta(i_1,\ldots,i_d,i_{d+1})\subseteq N(i_1,\ldots,i_d,i_{d+1})$ $((i_1,\ldots,i_d)\in H^*,1\leq i_{d+1}\leq l_{d+1}),\ |N|\geq q,\ |N'|\geq q,$ and suppose $N_H,\ N'_H$ are chosen as above with (45) and (46). By the "inductive" assumption on H, there are subranges $L\subseteq N_H,\ L'\subseteq N'_H$ with (41), (42). Since $L\subseteq N_H,\ L'\subseteq N'_H$, the relations (42) together with (46) yield

$$f^{\square}(L, L', \beta(i_1, \ldots, i_d, 2j-1), \beta(i_1, \ldots, i_d, 2j)) > \frac{1}{2} - \varepsilon$$

$$((i_1, \ldots, i_d) \in H^*, 1 \le i_{d+1} \le l_{d+1}).$$

Hence Lemma 12 is true for H^* with $p(H^*) = q$.

11. Proof of the proposition completed. We saw in §10 that if $M^{(d+1)}(S)$ contains an element μ in $0 < \mu < 1$, then $\mu \in M^{(d)}(S^{(1)}(u_1, \ldots, u_m))$ for some m-tuple (u_1, \ldots, u_m) . We applied the inductive hypothesis to $S^{(1)}(u_1, \ldots, u_m)$. There is a directed system $\alpha(i_1, \ldots, i_d)$ of order d, and there are neighborhoods $N(i_1, \ldots, i_d)$ and an integer $r = r^{(d)}$ with the properties stated in the proposition. Lemma 11 asserted the existence of a directed system $\alpha(i_1, \ldots, i_d, i_{d+1})$ of order d+1, and neighborhoods $N(i_1, \ldots, i_d, i_{d+1})$ and a number p which have certain properties in relation to the given directed system of order d.

Lemma 13. Suppose we have the same hypotheses as in Lemma 11, and let $\alpha(i_1, \ldots, i_{d+1})$, $N(i_1, \ldots, i_{d+1})$, p be as in Lemma 11. Suppose

(48)
$$\beta(i_1,\ldots,i_{d+1})$$
 $(1 \le i_1 \le l_1,\ldots,1 \le i_{d+1} \le l_{d+1})$

is a directed system with

(49)
$$\mu(\beta(i_1,\ldots,i_{d+1})) \subseteq N(i_1,\ldots,i_{d+1})$$
 $(1 \leq i_1 \leq l_1,\ldots,1 \leq i_{d+1} \leq l_{d+1}),$

but not necessarily of the same type as $\alpha(i_1,\ldots,i_{d+1})$. We know from Lemma 11 that if $|N| \geq p$, $|N'| \geq p$, then there are subranges $L \subseteq N$, $L' \subseteq N'$ with (37) and (38). We now claim that for every (i_1,\ldots,i_d) with $1 \leq i_1 \leq l_1,\ldots,1 \leq i_d \leq l_d$, we have

(50)
$$\sum_{j=1}^{l} f^{\nabla}(L, L', \beta(i_1, \ldots, i_d, 2j-1), \beta(i_1, \ldots, i_d, 2j)) > l(\frac{1}{2} - 2\varepsilon) - 2mr.$$

Proof. Throughout, we keep i_1, \ldots, i_d fixed. Since (48) is a directed system, the sequence $\beta(i_1, \ldots, i_d, i)$ with $i = 1, 2, \ldots, 2l$ is monotonic. Hence, by Lemma 1, a point \mathbf{x}_n can lie in at most m of the l sets

$$A(\beta(i_1,...,i_d,2j-1)^A(\beta(i_1,...,i_d,2j)))$$
 $(j = 1,2,...,l).$

It follows from Lemma 8 that at most m of the l functions

(51)
$$f(n,\beta(i_1,\ldots,i_d,2j-1),\beta(i_1,\ldots,i_d,2j))$$
 $(j=1,2,\ldots,l)$

can have a jump at n. Hence in view of (37), at most 2mr of these functions can have a jump at any $n \in L$ or any $n' \in L'$. It will suffice to show that if a function (51) has no jump in L or in L', then this function satisfies

(52)
$$f^{\nabla}(L, L', \beta(i_1, \ldots, i_d, 2j-1), \beta(i_1, \ldots, i_d, 2j)) > \frac{1}{2} - 2\varepsilon.$$

Suppose $n_0 \in L$, $n'_0 \in L'$. By (38), the values of our function (51) at $n = n_0$ and at $n = n'_0$ differ by at least $\frac{1}{2} - \varepsilon$. Without loss of generality we may assume that

$$f(n_0, \beta(i_1, \ldots, i_d, 2j-1), \beta(i_1, \ldots, i_d, 2j))$$

$$-f(n'_0, \beta(i_1, \ldots, i_d, 2j-1), \beta(i_1, \ldots, i_d, 2j)) > \frac{1}{2} - \varepsilon.$$

Now $f(n, \beta(i_1, \ldots, i_d, 2j - 1), \beta(i_1, \ldots, i_d, 2j))$ is of the type $\mu(\beta(i_1, \ldots, i_d, 2j - 1)) - \mu(\beta(i_1, \ldots, i_d, 2j))$ and has no jump in L. Hence for every $n \in L$,

$$|f(n,\beta(\ldots,2j-1),\beta(\ldots,2j)) - f(n_0,\beta(\ldots,2j-1),\beta(\ldots,2j))|$$

$$= |n-n_0| |\mu(\beta(\ldots,2j-1)) - \mu(\beta(\ldots,2j))|$$

$$< r(\varepsilon/4r) = \varepsilon/4,$$

by virtue of (36) and (49). A similar inequality holds for every $n' \in L'$, and hence we have for every $n \in L$ and every $n' \in L'$,

$$f(n,\beta(\ldots,2j-1),\beta(\ldots,2j)) - f(n',\beta(\ldots,2j-1),\beta(\ldots,2j))$$

$$> \frac{1}{2} - \varepsilon - 2(\varepsilon/4) > \frac{1}{2} - 2\varepsilon.$$

Therefore (52) holds, and Lemma 13 is true.

The proof of the proposition is now completed as follows. In Lemma 11 and in Lemma 13, the number l is still at our disposal. We now choose it so large that $l\epsilon > 2mr$. Then the right-hand side of (50) may be replaced by $l(\frac{1}{2} - 3\epsilon)$. Since $f(n, \alpha, \beta) = f(n, \alpha) - f(n, \beta)$, we may rewrite (50) as

(53)
$$\sum_{j=1}^{l} \left(f(\ldots, \beta(i_1, \ldots, i_d, 2j-1)) - f(\ldots, \beta(i_1, \ldots, i_d, 2j)) \right)^{\nabla} (L, L')$$
$$> l(\frac{1}{2} - 3\varepsilon).$$

For every directed system $\beta(i_1, \ldots, i_{d+1})$ with (49) and every pair N, N' with $|N| \ge p$, there are subranges $L \subseteq N$, $L' \subseteq N'$, with |L| = |L'| = r and with (53) for arbitrary i_1, \ldots, i_d . In particular, in every single N with $|N| \ge p$, there are two subranges $L \subseteq N, L' \subseteq N'$ with |L| = |L'| = r and with (53). By Lemma 3 applied to $f(n) = f(n, \beta(i_1, \ldots, i_d, 2j - 1))$ and $g(n) = f(n, \beta(i_1, \ldots, i_d, 2j))$ we have

$$f^{*}(N, \beta(i_{1}, \ldots, i_{d}, 2j - 1)) + f^{*}(N, \beta(i_{1}, \ldots, i_{d}, 2j))$$

$$\geq (f(\ldots, \beta(i_{1}, \ldots, i_{d}, 2j - 1)) - f(\ldots, \beta(i_{1}, \ldots, i_{d}, 2j)))^{\nabla}(L, L')$$

$$+ \frac{1}{2}(f^{*}(L, \beta(i_{1}, \ldots, i_{d}, 2j - 1)) + f^{*}(L, \beta(i_{1}, \ldots, i_{d}, 2j))$$

$$+ f^{*}(L', \beta(i_{1}, \ldots, i_{d}, 2j - 1)) + f^{*}(L', \beta(i_{1}, \ldots, i_{d}, 2j))).$$

We now take the sum over j = 1, 2, ..., l and use (53) to obtain

$$\int_{i_{d+1}-1}^{l_{d+1}} f^*(N, \beta(i_1, \dots, i_d, i_{d+1})) > l\left(\frac{1}{2} - 3\varepsilon\right) + \frac{1}{2} \int_{i_{d+1}-1}^{l_{d+1}} (f^*(L, \beta(i_1, \dots, i_d, i_{d+1})) + f^*(L', \beta(i_1, \dots, i_d, i_{d+1}))).$$

This holds for arbitrary i_1, \ldots, i_d with $1 \le i_1 \le l_1, \ldots, 1 \le i_d \le l_d$. We now take the sum over all d-tuples (i_1, \ldots, i_d) and divide by $l_1 \ldots l_d l_{d+1} = 2l_1 \ldots l_d l$. We obtain

$$(l_{1} \dots l_{d+1})^{-1} \sum_{i_{1}=1}^{l_{1}} \dots \sum_{i_{d+1}=1}^{l_{d+1}} f^{*}(N, \beta(i_{1}, \dots, i_{d+1})) > \frac{1}{4} - \frac{3}{2}\varepsilon$$

$$+ l_{d+1}^{-1} \sum_{i_{d+1}=1}^{l_{d+1}} \left(\frac{1}{2} (l_{1} \dots l_{d})^{-1} \sum_{i_{1}=1}^{l_{1}} \dots \sum_{i_{d}=1}^{l_{d}} \left(f^{*}(L, \beta(i_{1}, \dots, i_{d+1})) + f^{*}(L', \beta(i_{1}, \dots, i_{d+1})) \right) \right)$$

$$=\frac{1}{4}-\frac{3}{2}\varepsilon+l_{d+1}^{-1}\sum_{i_{d+1}=1}^{l_{d+1}}z(i_{d+1}),$$

say. Now for fixed i_{d+1} , $\beta(i_1, \ldots, i_d, i_{d+1})$ with $1 \le i_1 \le l_1, \ldots, 1 \le i_d \le l_d$, is a directed system of order d. We have

$$\mu(\beta(i_1,\ldots,i_d,i_{d+1})) \in N(i_1,\ldots,i_d,i_{d+1}) \subseteq N(i_1,\ldots,i_d)$$

by (35), (49), and both L, L' have length $r = r^{(d)}$. Hence by our inductive assumption, i.e. by the case d of the proposition, we have

$$z(i_{d+1}) \ge \frac{1}{4}(d+1) + \frac{1}{12} - \varepsilon,$$

whence

(54)
$$(l_1 \ldots l_{d+1})^{-1} \sum_{i_1=1}^{l_1} \cdots \sum_{i_{d+1}=1}^{l_{d+1}} f^*(N, \beta(i_1, \ldots, i_d, i_{d+1})) > \frac{1}{4}(d+2) + \frac{1}{12} - \frac{5}{2}\varepsilon.$$

This holds for every range N with $|N| \ge p = r^{(d+1)}(5\varepsilon/2)$, say. The whole construction could be carried out with $2\varepsilon/5$ in place of ε , and then our inequality (54) would become (8) with d+1 in place of d.

This finishes our inductive proof of the proposition.

12. Proof of Theorem 2. It is easily seen that the general case of Theorem 2 follows from the 2-dimensional case, so that we may restrict ourselves to this case.

Pick numbers $t_1 > t_2 > \dots$ with

(55)
$$0 < t_i < 1/(8j) \quad (j = 1, 2, ...),$$

and let $x_j = (x_j, y_j)$ be the point $(1 - \cos t_j, \sin t_j)$. Then the points x_1, x_2, \ldots lie on the circle $(x - 1)^2 + y^2 = 1$, and they satisfy

(56)
$$\sqrt{(x_i^2 + y_i^2)} < 1/(4j) \quad (j = 1, 2, ...).$$

For every μ in $0 \le \mu \le 1$, we are going to construct sets $F(n, \mu)$ (n = 1, 2, ...) as follows. If $\mu < \frac{1}{2}$, let $F(1, \mu)$ be empty, and if $\mu \ge \frac{1}{2}$, let $F(1, \mu)$ consist of x_1 .

Then always

(57)
$$||\mathbf{F}(1,\mu)| - \mu| \le \frac{1}{2},$$

where |F| denotes the number of elements of a finite set F. Now suppose $F(n, \mu)$ has already been chosen and is a subset of $\{x_1, \ldots, x_n\}$ with

$$(58) ||\mathbf{F}(n,\mu)| - n\mu| \leq \frac{1}{2}.$$

Then $-(3/2) \le |F(n, \mu)| - (n+1)\mu \le \frac{1}{2}$, so that either $|F(n, \mu)| - (n+1)\mu| \le \frac{1}{2}$ or $|F(n, \mu)| + 1 - (n+1)\mu| \le \frac{1}{2}$. If the first inequality holds, put $F(n+1, \mu) = F(n, \mu)$; otherwise let $F(n+1, \mu)$ consist of $F(n, \mu)$ and of x_{n+1} . In either case we have $|F(n+1, \mu)| - (n+1)\mu| \le \frac{1}{2}$. Continuing in this way we obtain sets $F(1, \mu)$, $F(2, \mu)$, ... which satisfy (58) for $n = 1, 2, \ldots$

Let $G_1(\mu)$ be the convex hull of the sets $F(1,\mu)$, $F(2,\mu)$, Then $G_1(\mu)$ is the convex hull of certain points among x_1, x_2, \ldots . If $\mu = 0$, the sets $F(n,\mu)$ are empty, and hence so is $G_1(\mu)$. If $0 < \mu \le \frac{1}{3}$, put $n_0 = [1/(3\mu)]$ and apply (58) with $n = n_0$. Since $n_0 \mu \le \frac{1}{3}$, we obtain $|F(n_0, \mu)| = 0$, and hence x_1, \ldots, x_{n_0} do not lie in $G_1(\mu)$. Thus $G_1(\mu)$ is the convex hull of certain points among $x_{n_0+1}, x_{n_0+2}, \ldots$, and in view of (56) we obtain

$$\mu(G_1(\mu)) \leq \frac{\pi}{4} (1/(4(n_0+1)))^2 \leq \left(\frac{\pi}{64}\right) (3\mu)^2 < \mu.$$

If $\frac{1}{3} < \mu \le 1$, we have $\mu(G_1(\mu)) \le \pi/4 - 1/2 < 1/3 < \mu$. Hence always $\mu(G_1(\mu)) \le \mu$.

If $0 \le \mu \le \frac{1}{2}$, let $G_2(\mu)$ be the convex hull of $F(1,\mu)$, $F(2,\mu)$, ... and of the triangle $0 \le x < 1$, $0 \le y < 1$, y < x. If $\mu = 1$, let $G_2(\mu)$ be U^2 . In these cases we have $\mu(G_2(\mu)) \ge \mu$. If $\frac{1}{2} < \mu < 1$, we have $\mathbf{x}_1 \in F(1,\mu)$ by (57), and there is a smallest integer n_1 such that $\mathbf{x}_{n_1+1} \notin F(n_1+1,\mu)$. In this case let $G_2(\mu)$ be the convex hull of $F(1,\mu)$, $F(2,\mu)$, ... and the open quadrilateral with vertices (1,0), (1,1), \mathbf{x}_{n_1} , \mathbf{x}^* , where $\mathbf{x}^* = (x^*,1)$ is the intersection of the line y=1 and the tangent to the circle $(x-1)^2 + y^2 = 1$ at \mathbf{x}_{n_1} . The quadrilateral contains the open rectangle with vertices (x^*,y_{n_1}) , $(1,y_{n_1})$, $(x^*,1)$, (1,1) of area $(1-x^*)$ $\cdot (1-y_{n_1}) = ((1-y_{n_1})/(1-x_{n_1}))(1-y_{n_1}) > 1-2y_{n_1} > 1-2t_{n_1}$. Since $\mathbf{x}_1, \ldots, \mathbf{x}_{n_1}$ are in $F(n_1+1,\mu)$, but \mathbf{x}_{n_1+1} is not, (58) yields $|n_1-(n_1+1)\mu| \le \frac{1}{2}$, whence $n_1 \ge (\mu-\frac{1}{2})/(1-\mu)$, whence, by (55),

$$\mu(G_2(\mu)) > 1 - 2t_{n_1} > 1 - (1/4n_1) \ge$$

$$3/4 \ge \mu \quad \text{if} \quad 1/2 < \mu < 3/4,$$

$$1 - (1 - \mu) = \mu \quad \text{if} \quad 3/4 \le \mu < 1.$$

Since $G_1(\mu)$, $G_2(\mu)$ are convex sets with $\mu(G_1(\mu)) \le \mu \le \mu(G_2(\mu))$, there is a convex set $S(\mu)$ with $G_1(\mu) \subseteq S(\mu) \subseteq G_2(\mu)$ and with $\mu(S(\mu)) = \mu$. The set $S(\mu)$ lies in U^2 , since $G_2(\mu)$ does. The intersection of $G_1(\mu)$ with $\{x_1, \ldots, x_n\}$ is $F(n, \mu)$, and the intersection of $G_2(\mu)$ with $\{x_1, \ldots, x_n\}$ is $F(n, \mu)$, so that also the intersection of $S(\mu)$ with $\{x_1, \ldots, x_n\}$ is $F(n, \mu)$. Therefore, by (58),

$$D(n, S(\mu)) = |Z(n, S(\mu)) - n\mu(S(\mu))| = ||F(n, \mu)| - n\mu| \le \frac{1}{2}$$

for n = 1, 2, ..., so that $E(S(\mu)) \le \frac{1}{2}$. Since μ was arbitrary in $0 \le \mu \le 1$, Theorem 2 is proved.

REFERENCES

- 1. H. Kesten, On a conjecture of Erdős and Szüsz related to uniform distribution mod 1, Acta Arith. 12 (1966/67), 193-212. MR 35 # 155.
- 2. A. Ostrowski, Math. Miszellen. IX. Notiz sur Theorie der Diophantischen Approximationen, Jber. Deutsch. Math.-Verein. 36 (1927), 178-180.
 - 3. W. M. Schmidt, Irregularities of distribution. VI, Compositio Math. 24 (1972), 63-74.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80302